Hydro Power

Hydroelectric Power is pretty simple, yes? Build a dam, run water through turbines, get energy out. Turns out that it is a bit more complicated that that. But not by much, actually. So I am going to do a quick summary of how hydropower works, the environmental disaster that it can be (always with the tradeoffs, eh?). I was going to profile three major power plants: Hoover, Grand Coulee, and Three Gorges. But I ran out of space. Next week we will discuss pumped hydro to make the biggest batteries on the planet, and also these three dams in details.


Hey! Finally! A picture I took myself! I was at the three gorges dam as they were just completing it. Also, China has air pollution issues.

How does water power work? Put simply, water falls from a height and the energy of it is harnessed by spinning a turbine. More complicated, it is mass*gravity*height:

 m \cdot g \cdot \Delta h

Schematic cross-section / block diagram of a hydropower plant. link.

Now we also need to round down for efficiency. Our thermal power plants are limited by carnot efficiency, yes? And even the best don't really break 50% efficiency all that easily. What would you guess the efficiency of a hydro plant turbine is, then?

That depends on the type of turbine used. It turns out that turbines are some of the most efficient parts of any generating facility. In short, expect these guys to have 90%+ efficiency, probably closer to 95%. Different styles are used depending on the height of water drop (water moving really fast from a half-kilometer drop will have very different dynamics than water moving from a 20m drop).

The general design of a hydropower turbine. Water flows through the blades and the generator is, in turn, spun quickly. link

So let's figure out how much water we need to move to make 100MWh of electricity from a 200m drop! Now 1 MWh is    3.6 \cdot 10^9 J , so 100MWh 3.6 \cdot 10^{11} J

 3.6 \cdot 10^{11} = mass \cdot 9.8 \frac{m}{s^2} \cdot 200m

 mass = \frac{3.6 \cdot 10^{11}}{9.8 \frac{m}{s^2} \cdot 200m}

 mass = 1.8 \cdot 10^8 kg of water needs to be moved. In other words, it takes 18 thousand kilotons of water movement to produce 100MWh. Or, looked at another way, 18,000 cubic meters of water. Still not following? It's about 8 olympic sized swimming pools worth of water. Dropping 200m. Or 1/8 a mile, for you Americans out there that don't play in Metric.

Hokay, enough maths for now. This sounds great, right? Why don't we build these things everywhere? When I take courses on how to fix the environment, there are always a majority of people that assume we can build more hydro power plants. But we can't in the US. Why not?

Well, it turns out that you need to have a large height drop to make this work. You also need a lot of water flowing into whatever reservoir is behind the dam, a ton of land behind that dam to flood, and you also need enough high terrain behind it so the water doesn't spill out everywhere. Moreover, you need a massive height difference between the upper reservoir and lower reservoir to make it work. Example: the Amazon river has a huge % of total world river flow, but we can't get electricity out of it, cause the elevation drop of it is so tiny. In short, there aren't a ton of places where where hydro works well. And imagine if a few people live there. Most aren't gonna take to kindly to their homes being put under tons of water. But you know where this can happen? China! They moved 1.3 million people to build Three Gorges. More on that later. Also, Africa has a ton of places that are building dams. Turns out that China is funding a lot of these. Cause China is starting to do humanitarian things internationally to make allies with the countries that will be the source of most world growth over the next 50 years. Upsides and downsides of a command economy, right?

Hokay, I got distracted there. Environmentalists don't like dams because they mess up fish migrations, destroy natural habitats, destroy the landscape in general, and in many countries, since hydro power is so cheap, heavy industry moves in next to them to get the cheap electricity. China is a great example (sorry I keep using you as an example, China, but I haven't read about other countries much). Along many rivers, supposedly clean hydro power goes in, only to be followed by very polluting industries. Rivers turn funny colors, the water is terrible to drink, and you can't see the sun through pollution on several days. This is getting better, cause China is making the middle-income transition, and citizens are demanding safer living environments.

I got distracted again. Other problems with dams? They tend to be on rivers. Rivers carry sediment. Much like wind can pick up grains of sand and throw then around, rivers do the exact same thing. They carry a lot of sand in them. But when they hit a damn, the river stops. The sediment load drops to the ground. After several decades, sufficient sand has dropped to clog the dam. Adding to this problem is that these sediments have a bunch of heavy metals that have been leached from the local environment. In short, a hydro dam leaves behind a mess that is quite hazardous. Cleaning it up can be difficult. Still, hydropower doesn't cause many deaths, unlike coal-fired power plants.

Focusing on that last point, what does hydro power not produce? CO2. Mercury. SO2. NOx. It produces none of the nasty things that coal fired power does (even gas-fired plants produce NOx and CO2). It tends to be very inexpensive. It is much prettier to look at a hydro plant than a coal, gas, or nuclear plant (Except on a polluted day in China, look at that picture again!).

We are running out of space in this article (I am calling them articles cause I am pretending they are articles on a web page instead of a blog post, cause I am pretentious). To summarize, hydro power is cleaner than other power supplies. It is cheaper than most. It does have its drawbacks, including displacing people and destroying land, but these are smaller than the drawbacks of coal and natural gas. It is also a nearly completely tapped resource in the US.

-Jason Munster

End-note: if you have a lot of interest in this sort of thing discussed here, I would highly suggest the book When A Billion Chinese People Jump by Jonathan Watts. It is an amazing book


Wind Power

I haven't posted anything in a while because I am teaching this semester (Earth Resources and the Environment), which has made me incredibly busy, and also I was playing a computer game for the past month. Anyways, some friends told me they actually read this, so I am gonna start up again.

Today we discuss how wind power works, how a wind turbine works, and limitations on placement of wind turbines.

Block diagram of a wind turbine. Wind spins the blades, which in turn goes through a transmission to spin a turbine to produce electricity.

Block diagram of a wind turbine. Wind spins the blades, which in turn goes through a transmission to spin a turbine to produce electricity.

Wind power harnesses the power of wind to turn a turbine. Unlike every other power plant we have discussed, this is not a thermal plant. How does wind even happen? As we all know, the sun shines more directly near the equator than it does the poles. And so the equator is heated more than the poles. The Earth doesn't like having one part heated and another not, so the major prevalent winds are the way the Earth redistributes this uneven heating from the equator to the poles. Smaller winds are local manifestations of this phenomenon. In short, wind power is extracting the energy deposited by the sun.

Next: the design

The mechanical design of a wind turbine. Link

The rotors of a wind turbine catch the wind, and thanks to Bernoulli's principle, the wind forces the turbine to spin. Think of it as creating an area of low pressure behind the blade, so the blade is getting sucked, or pulled, rather than pushed in a circle. These blades are attached to a hub, which spins with it. The entire box behind the turbines is called the Nacelle, and contains all the parts that produce power. The hub itself spins somewhat slowly, but thanks to a gearbox, the shaft that goes to the generator spins much more rapidly. The windvane senses the wind direction, and a motor beneath the hub rotates the entire turbine to face directly into the wind.

Wind power plants face four primary limitations. First, they don't work when wind isn't blowing. So you aren't placing these things in windless or low-wind locations. Second, depending on the design of the turbine, each has a maximum wind speed where it most efficiently extract energy. In fact, during high winds, they have to shut down to prevent damage. Third, there is a factor called the Betz limit that indicates that the most energy you can extract from wind is about 60%. In reality, the best might be 45% efficient. A corollary fourth limit is that you cannot place wind farms too closely, because they become far less efficient if you place them nearby. They literally suck out the power from the wind. In the end, availability of location is the most important

This photo from NOAA uses LIDAR to track the turbulence produced in the wake of wind turbines. It visually depicts the limitations of putting turbines in the same place. The turbulence behind the turbines can damage the props on the next turbine, requiring further replacement. It also reduces the efficacy of the next turbine. link to NOAA.

Ultimately, the largest problem is where to site wind farms. You can't put them in places without wind, or you spend a ton of money on them and they don't return the payment.

This map indicates regions and their use for wind farms. It shows that many areas are not great for wind farms. Click the link for a more detailed image.

There are two closely linked issues associated with wind power. In most places, wind does not always blow. When the wind is not blowing, power cannot be extracted. This is called intermittency. It means that wind power cannot provide baseload power. In some places, like California, the intermittency is dealt with by power up peaking gas-powered power plants. In other places, the intermittency is seen as an insurmountable issue (California surmounted it. Those other places are foolish.) Other methods of dealing with it are compressed air storage (more on that later), batteries, and pumped hydro (more on that later).

Another important feature of wind turbines is size. To get more power from a single turbine and reap larger economies of scale, you build a taller turbine. Also, taller turbines reach farther up into the part of sky where wind it a bit more constant. But those huge turbines, that can produce up to 5MW each (recall a larger power plant is 1000MW), are relatively new. We are not sure how long they last in the wild. Maybe 50 years (like a normal power plant) or maybe 20. This is important, because per MW, wind power used more resources to build than almost anything else.

Now, offshore wind is a different beast entirely.

Offshore wind turbines become progressively more expensive as you move to deeper waters.

Offshore wind turbines become progressively more expensive as you move to deeper waters.

These things need to be moored to the ocean floor, or have very expensive floats. It can increase production cost by a factor of three. Ameliorating this fact is that wind is often more consistent offshore. But these things face waves, corrosive ocean water, severe storms, etc., and need to be built very strong, increasing costs. Moreover, they need a way to connect them together, and then very powerful regional lines to transfer the power to mainland. Expensive. If you remember my post comparing the cost of nuclear power to other types, offshore wind is mad expensive.

Another interesting point about wind power (and solar): they produce DC power. This is direct current, like a battery. The power we get from the wall is AC power. It alternates. Anything with a motor likes AC power a lot. Many electronics prefer DC power, hence needing AC adapters for all your electronics. Batteries use DC. Another fun fact about AC vs DC? Electricity make your muscles constrict. If you grab something with AC, since it alternates you let go. You grab something with DC, like a car battery or a taser while being arrested, that stuff causes constriction and you can't let go. Point is, stay away from DC electricity.

Back to the point: Somewhere in the process, whether at the turbine or at a collection station, this electricity needs to be converted to AC to use on the electrical grid. More expenses. In short, offshore wind is incredibly expensive, and only for countries that are afraid of nuclear power. In a later article, I hope to compare the resource costs per MW of constructing each of these types of power plants.

Thanks for reading again!

-jason munster


Oil Refining

Today's post is about something important that I entirely took for granted that most people don't know about. Oil refining.

Oil refinery, pic from eia.

For those five of you that read last week's post and wondered where I got all that from, a lot of that information came from books on geopolitics and a course called Geopolitics of energy. More or less, geopolitics goes far beyond your government course to include geographic/geologic/demographic constraints.

Anyways. Refining. No equations here. Sorry if you like those.

Basically, refineries buy crude oil and distill it to usable products based on the fact that crude oil is a mix of a bunch of different products. Your typical barrel of low-grade crude from Venezuela will have 40% of a substance that can be only used as road tar. This is called residuum. Chemically speaking, it is chains of long, heavy molecules, not useful for much. More chemically speaking, the Van Der Waal's forces, which are based on molecular mass, attract these to each other, so they are sticky and have high boiling points.

Distillation temperatures (and a rock block diagram of a refining tower) of different crude oil components. from EIA.gov

How do these get separated? By their different boiling points! Refineries are towers. Everything at the bottom is very hot, so just about everything boils. Farther up the heaviest stuff with the highest boiling points will condense out to liquid phase, while stuff with lower boiling points will stay in the gas phase. This pattern continues all the way up, until the different products are fully taken out.

A schematic of a refining tower. Nearly everything in the bottom is volatile (gas phase). As you move up in the tower, temperature drops, and the heaviest items condensate out in liquid form, collect in trays, and are removed. source: chevron Pascagoula

Gasoline is amongst the most valuable commodity pulled out of a barrel of crude. Diesel in the US is more valuable if it can make its way to the east coast, where it can be shipped to Europe. Why does Europe use more diesel than the US? Cause the gasoline tax there is much higher than the diesel tax. So the price for gasoline is artificially raised very high, and then the price for diesel (which can be substituted for gasoline in most applications) rises to something underneath gasoline. Since petroleum products are a globally traded good, the price of diesel in the US is directly affected.

Barrels of oil are not created equal. Stuff coming out of Saudi Arabia can produce a lot of gasoline (we are talking nearly 70 or 80%). Stuff coming out of the Canadian tar sands might produce closer to 20%, and have a ton of residuum. A barrel of Canadian tar sand oil is thus worth much less than a barrel of Saudi crude. Note: the Bakken produces a barrel that is even better than Saudi. It is some of the best in the world. It is worth less at the well head (where it comes from the ground) than other barrels. Cause the Bakken developed so rapidly that there is not enough transport capacity. This elucidates another important point. Refineries buy crude oil.

Hokay, next stop on refineries: different types. The crude that comes from Venezuela and the Canadian tar sands is incredibly low quality. It is filled with heavy stuff. In order to distill it, it needs to go to special refineries. It turns out that Texas and the American South are one of the few places that can handle this super thick sludge. So Venezuela can complain all they want about the US, but their only buyer for their product is currently the US. No one else has the ability to process it. What about Canadian tar sands and Keystone XL? Most of us have heard that China is willing to buy that stuff, and they will if Keystone does not go in. It would be pretty easy for that stuff to be shipped to the coast, and if China could have a guaranteed supply of it for years, it would be worth it for them to build refining capacity for that thick sludge. So if we don't build Keystone or develop rail capacity to buy that junk from Canada, then China will.

How much money does refining oil make? A couple of dollars per barrel. Compared to Saudi Arabia making nearly $100 a barrel, this doesn't seem like much. But given there are 80 million barrels of oil used a day in the world, that means there is somewhere between $100 and $150 million per day to be made in the world by refining oil. If you are Exxon and don't have all that much access to produce in a Saudi oil field, this could be a great option.

Okay. That's about it. Thanks for reading.

-Jason Munster