BlueSkies Launch and Bad Science of Asthma and Polution

Product launch (finally!) and the science

Image of BlueSkies product attached to a baby stroller. It surrounds the infant with filtered air

This post is about science and bad science.

But first, most of you reading this already know that three days prior to this post, BlueSkies (where I am the founder) finally launched our product on indiegogo. Some of you may have seen our post featured on the asthma blog of Dr. Ann Wu, a pediatrician at Boston Children's Hospital and a Public Medicine researcher at Harvard Medical School with a focus on asthma. Pretty much she is awesome. You can read some of the science details there, and I won't rehash the links. But please go to the indiegogo campaign and support and share it if you haven't already!

Science and bad science.

Traffic pollution almost certainly is one of several causes of asthma. Journal article after journal article has shown this. Yet some journal articles somehow show that traffic pollution doesn't cause asthma. What gives?

Bad science.

Bad science can be alright science that disguises itself as great science, leaving lay readers to not know what is just alright, and what is great.

Here is my favorite thing: ripping apart people who don't know what they are doing, but they like to write like they do.

The best example is this article here that showed no link between air pollution and asthma rates.

Except they literally didn't measure air pollution during the study. They did the study in 1994-2008, and then measured air pollution in 2009. They used 2009 data to estimate pollution levels in the years prior. This is bad science. But they did the science, so they should publish it. They should have put caveats in the abstract. But no one should be citing this study. Because it wasn't a great study.

Wrong type of "lab work." This is roughly the level of atmospheric chemistry that was going on in this study. 

Better studies measure air pollution directly, and then compare it to asthma rates. Every well-conducted study I've seen shows a link between air pollution and asthma rates. Every study I've seen published that doesn't show a link... well, these all have gaping holes in the science.

Not measuring air pollution, and then trying to associate air pollution levels with asthma rates, is the equivalent of saying "The economy in the US in 2011 was not great. I see we have low unemployment rates. It must be because of that, because housing prices have been steady for the last year," when we all damn well know that the housing bubble, fueled by wall-street repacking the housing debt, caused the collapse.

Conclusion: this paper was just okay. It should never be cited when there are papers that actually measured pollution when they wanted to know what the pollution levels are.

How is a non-scientist to know which of these articles are correct?

You can't. This particular detail of the research seems super tiny. The researchers themselves probably didn't realize it was a problem because they are not atmospheric chemists. If you send the articles to a pediatrician studying childhood asthma, they'd probably not pick out the distinction I just made between these studies measuring vs. modeling pollution. The only reason I can do it is because I more or less have a PhD in measuring vs. modeling pollution. The only way for you to know it is wrong is to go to an expert and ask them.

One final, very confusing note

Some studies measure pollution directly in one area, and then adjust around that measured pollution level by using models. Say, for instance, I am measuring air pollution near a freeway in New York City. I know that traffic is producing pollution there, and I also know that Central Park has no traffic (cause it's a park)

Central park in NYC is vast. It's green. And trees can filter pollution to a degree (parks in China are overwhelmed, though, for example)

The result? If I were making a map of air pollution in NYC, and I was only measuring pollution from near highways, I would know that I had to lower the pollution in the park. I would measure the pollution in the park at several different intervals, and then make a model of why it differs from the pollution near the highway. The key is that I've measured both at the highway, and at the park. I measure at the highway always, I measured at the park several times, but I could not afford to measure at the park always. I create a relationship. This means I have a good understanding of pollution levels in the park, even when I'm not measuring it, because I know how those levels relate to pollution near the highway. If I measured both at all times, I'd have a strongly good understanding of pollution levels in both places.

Yes, strongly good is not a real phrase.

Thanks for reading!

- Jason Munster

Air Pollution - Types, Sources, and Fixes

I finished my PhD last week. Today I start posting again. This is a month-long series, one post each week, regarding air pollution and our health. First, we discuss types of pollution, then the health effects of different types based on where you live (US vs. China as case studies), then we move on to the health effects of each type, finally we end on how you filter it.

Hint: Two posts ago (and over a year ago) I said I was taking a break to build a better pollution filter. I did that, and the final post in the series will be telling you all about that part. In the meantime, please go to www.getblueskies.com, sign up for our upcoming release emails (which will let you know when we launch on indiegogo with a discount for the first buyers), and share our website with your friends that might be interested.

Air Pollution

I was speaking with a physician about air pollution, and about which types cause asthma, and she was stunned that there is background research indicating that different types of outdoor pollution have differing relationships with asthma. Part of the reason for this was that she didn't realize how easy it was to differentiate which types of pollution come from which sources.

Okay, then. There are several major types of pollution. And NO2 from traffic is far and away the outdoor pollutant that that is most highly associated with our increasing asthma rates in the US (more on this in a future post).

Major Pollution Types

Particulate Matter is big chunky pollution. It is called PM10, or PM2.5, for how wide it is. PM10 is 10 microns wide, PM2.5 is 2.5 microns wide. For comparison, the average human hair is on the order of 100 microns wide (thin hair is about 17 microns, thick hair is up to 180). PM can be dust, fine soot, pet dander, or pest droppings (think cockroach poop). These can be very easily filtered with HEPA-style filters (HEPA filters are physical filters that block large pollution particles using small holes).

A photo from my time in China. PM pollution is pollutiion you can see.

A photo from my time in China. PM pollution is pollution you can see.

Chemical Pollution is very defined and very small. It's specific molecules. It's about 10,000 times smaller than PM2.5. It's also about the size of the the air we breathe, so you can't physically filter it. It is things that you've heard of, like CO (carbon monoxide), SO2, and NO2 (these both become strong acids in water, which causes acid rain. Note that our lungs are about 100% humid air, so they become strong acids, like battery acid, in your airways). These are extremely difficult to filter, and tend to require chemical reactions (more on that on a later post!). We are focusing on SO2, which just comes with fossil fuels, and NO2, which comes about every time you burn something in our atmosphere (our atmosphere is 78% nitrogen, and 21% oxygen, when you burn things, it uses the oxygen to convert stuff into CO2 and other emissions, but at high heats, it also produces NO2. Higher heats means more NO2). We ignore CO for now, and we ignore CO2 because it doesn't cause immediate health threats compared to these other pollutants.

Cars emit a lot of NO2. Catalytic converters help, but they still produce NO2 in amounts that are harmful

Cars emit a lot of NO2. Catalytic converters help, but they still produce NO2 in amounts that are harmful

VOCs are complicated. They are typically things you smell, like the new car smell, new elevators, paint, permanent markers, etc. Some people are highly sensitive or allergic to these. They can typically be filtered by most activated charcoal filters, because the carbon radicals in VOCs tend to adsorb well onto charcoal (ie they bond to it). We are going to ignore this, because we're assuming you don't like to leave your child in a freshly painted room, in new cars, or on new elevators.

Pollution Sources and Types

Hokay, so, now we need to discuss which pollution sources produce each. So I've made this helpful chart. These are relative amounts of pollution within their category, with no clear scaling criteria, but it gives you an idea of how different vehicles or power sources relate in terms of pollution. In other words, a two stroke engine clearly doesn't produce as much pollution as a coal fired power plant More important, these are rough relationships. You can have a wide range in each category, with a coal plant with no controls that burns high-quality coal producing significantly less pollution than the same design coal plant that burns low quality coal, for example.

Chart with differing sources of pollution, and relative amounts of pollution produced by each.

Chart with differing sources of pollution, and relative amounts of pollution produced by each.

 

Let's go through this one-by-one.

Vehicles burn gasoline or diesel. Gasoline vehicles pretty much just produce NO2 (and CO! But we are ignoring that for now), and our catalytic converters help reduce that. Smog is a byproduct of NO2 interacting with other pollutants that are already in the air. The part of smog that we see is actually PM pollution, rather than chemical pollution. Diesel vehicles produce a lot PM, and some SO2, and relatively more NO2. Catalytic converters can reduce NO2. Using low-sulfur diesel can reduce SO2. A lot of developing countries do not use low-sulfur diesel or catalytic converters, so they produce a ton more of every type of pollution. Two Stroke Engines are common in India (and other places, but not so much in China, and almost never in developed countries, unless you count lawnmowers). These things burn oil alongside gas. They produce nasty fumes, like your weedwacker or small lawnmowers. This is part of the reason that India has a particularly nasty type of air pollution. These are being phased out over time, with bans on new models of two-stroke engines in many cities.

Power Plants are a lot more complicated. In the next post, I will be discussing pollution controls in power plants in more detail. Put simply, natural gas powerplants produce predominantly NO2. They burn CH4, and convert it to CO2 and H2O. NO2 emissions can easily be reduced by 90% with proper controls (discussed in the next post). Coal fired power plants can be nasty. With no controls and with using low-cost coal, they produce a lot of each type of pollution. PM is the result of impurities in the coal that can't be burnt, or unburnt specs of coal. Low-grade coal produces prodigious amounts of PM, and contains a lot of sulfur that burns to produce SO2. They produce a lot of NO2. All of this can be reduced greatly simply by building in controlling systems. These controlling systems are used in nearly every coal plant in developed countries and in many coal plants in advanced developing countries. They are completely ignored in nearly every coal plant in many developing countries.

smoke_stack

Which should I be concerned by?

Traffic Pollution vs. Power Plant Pollution

Which of these should you care about? That depends on where you live. Most of the pollution in developing countries comes from power plants, but if you live next to a busy street or highway, traffic pollution could be the bigger concern. If you are in a developed country, particularly the US, traffic pollution is almost always the largest concern. Why? Because you are sitting directly next to the source. Whether you're biking or walking with your infant in a stroller, you are right next to the pollution. The problem exacerbates when you are nearby to a highway or major intersection, because there is a ton of traffic.

So, in short, if you are in the US and much of Europe, you should be worrying about the invisible (but smellable) traffic pollution that you are breathing in. If you are outside the US, it varies country by country. If you are in China or India, you need to be concerned about both traffic and powerplant pollution, and there is pretty much no escaping it.

Thanks for reading!

- Jason Munster

 

Blue Skies

The name of my new company!

The name of my new company!

Check out my new digs at www.getblueskies.com. I'm building the first mobile filters that can filter all the common air pollutants that kill you.

One year ago today I said I was going to find ways to help people dying from air pollution. Sitting in academics and talking about the problem isn't enough for me. I have to help solve the problem.

Tomorrow my company is being featured on an Autodesk blog. Autodesk is a $10B company that makes Computer Assisted Design software. I'm hoping for around 10,000 page hits to follow. So, pretty much, it's now a thing.

Why did I name it Blue Skies? Cause it was named Clear Breath when we intended to launch in China first. The translateration roughly means "power and strength." Then I decided to launch in the US first. To Americans, Clear Breath sounds like a breath mint.

So. What do I have? Wait for the autodesk blog to come out to find out. Or check out my website.

But for real though. Go to my website and sign up for my mailing list. You can be one of the first 100.

I want to give a shout out to the Harvard Innovation Lab. For the most part, they've been supportive all along, and have given me a space to work and awesome training (although Neal and Yash really need to stop worrying about standard 150A air cylinders and let me bring those things into the prototyping space).

From here on out, my posts on this website are going to be less about climate change and energy, and more about whatever I want to talk about. A lot of the energy stuff will be moving to www.getblueskies.com.

Thanks for being with me this whole time!

- Jason Munster